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Abstract
In this paper, an algebraic and a differential star product defined on a regular
coadjoint orbit of a compact semisimple group are compared. It has been
proved that there is an injective algebra homomorphism between the algebra
of polynomials with the algebraic star product and the algebra of differential
functions with the differential star product structure.

PACS numbers: 02.20.Sv, 02.20.Tw, 02.40.−k

1. Introduction

The problem of classification of differential star products on a general Poisson manifold was
solved in [1]. The existence of star products on symplectic manifolds was already proved in
[2, 3] and, using a different technique, a construction of a star product and a classification of
all star products on a symplectic manifold were given in [4, 5]. For other special cases, as for
regular manifolds, a proof of existence of tangential star products was known (see [6]).

To motivate our discussion, let us consider the Heisenberg group H = R
3 with

multiplication

(a1, b1, c1) · (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2 + a1b2).

Its Lie algebra is h = R
3 = span{Q,P,E′ = −iE} with commutation rules

[Q,P ] = −iE (the rest trivial).
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The coadjoint orbits of H are the planes c = constant �= 0 (regular orbits) and the points
(a, b, 0). One way of obtaining the Moyal–Weyl product on R

2 is considering the Weyl map
or symmetrizer in the enveloping algebra of h,

Sym : Pol[h∗] → U(h)
(1)

x1x2 · · · xk �→ 1

k!

∑
σ∈Sk

Xσ(1) · · ·Xσ(k)

where xi are the coordinates on h∗ on the basis dual to {Xi} in h. By multiplying
the commutation rules by a formal parameter h we obtain the following star product on
Pol[h∗][[h]]:

f � g = Sym−1(Sym(f )Sym(g)). (2)

This star product is differential, so it can be extended to C∞(h∗), it is tangential, so it can be
restricted to the orbits and it is algebraic, that is, it is closed (and convergent) on polynomials.

If instead of the Heisenberg group we take another group, say SU(2), we can define a star
product using the symmetrizer as in (1). The resulting star product is algebraic and differential,
but it is not tangent to the coadjoint orbits, so it does not define a star product on them, in this
case the spheres.

Two different approaches can be taken at this point. One is to look for a differential star
product on the sphere in the spirit of [1–4]. The resulting star product is neither algebraic nor
appears related to the product on the enveloping algebra. The other approach insists on using
the product in the enveloping algebra. The consequence is that differentiability is lost. These
kinds of star products have been considered in [7–10] and, in particular, in [8, 9] it was proved
that a non-differential star product on coadjoint orbits of SU(2) corresponds to the standard
quantization of angular momentum. It then seems unavoidable to look for a wider class of
star products than the differentiable ones. In particular, one cannot immediately assume that
the canonical quantization given by Kontsevich’s theorem [1] is the one relevant for physics
in all cases.

The problem of existence and classification of algebraic star products on algebraic Poisson
varieties appears as a separate problem, mathematically interesting in itself, which has been
recently studied in [11]. From the physical point of view it is of interest since the algebra
of a physical quantum system may have a non-differential star product, as in the case of the
angular momentum and its standard quantization.

Our purpose here is to compare the deformations obtained by algebraic [8, 9] and
differential methods on regular coadjoint orbits of compact semisimple Lie groups. We
want to establish if there is some kind of equivalence among these different star products.
We work with a family of algebraic star products, not all isomorphic, and we relate them
to the differential star product given by Kontsevich’s theorem or Fedosov’s construction [4].
Our result is that one of the algebraic star products can be injected homomorphically into the
differential one.

The organization of the paper is as follows. In section 2 we recall known facts concerning
coadjoint orbits of a semisimple compact group G and its complexificationGC. In section 3
we introduce different star products on a fixed regular coadjoint orbit � and on a tubular
neighbourhood of the orbit N�, and we prove that two different star products on N�, one
tangential �T and one nontangential �SN�

, are equivalent. In section 4 we show our main
result, that there is an injective homomorphism between an algebraic star product �P� and
a differential one �T� on the orbit �. The algebraic star product belongs to the family
constructed in [8], while the differential one is obtained by gluing tangential star products
defined on open sets of N�, computed with Kontsevich’s formula [1]. In appendix A we give
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for completeness some standard definitions and results on star products and deformations.
In appendix B we give an explicit formula for the gluing of star products given in open sets
and satisfying a compatibility condition, in terms of a partition of unity.

2. Coadjoint orbits of semisimple Lie groups

Let G be a compact semisimple group of dimension n and rank m and g its Lie algebra. Let
g∗ be the dual of g. On C∞(g∗) we have the Kirillov Poisson structure:

{f1, f2}(λ) = 〈[(df1)λ, (df2)λ], λ〉 f1, f2 ∈ C∞(g∗) λ ∈ g∗.

(df )λ : g∗ → R can be considered as an element of g, and [ , ] is the Lie bracket on g. Let
{X1 . . . Xn} be a basis of g and {x1, . . . , xn} the coordinates on g∗ in the dual basis. We have that

{f1, f2}(x1, . . . , xn) =
∑
ijk

ckij x
k ∂f1

∂xi

∂f2

∂xj

where ckij are the structure constants of g, that is [Xi,Xj ] = ∑
k c

k
ijXk.

g∗ is an algebraic Poisson manifold since the ring of polynomials R[g∗] is closed under
the Poisson bracket.

The Kirillov–Poisson structure is neither symplectic nor regular. The symplectic leaves
are the orbits of the coadjoint action of G on g∗,

〈Ad∗(g)λ, Y 〉 = 〈λ,Ad(g−1)Y 〉 ∀g ∈ G λ ∈ g∗ Y ∈ g.

We denote by �λ the orbit of an element λ ∈ g∗ under the coadjoint action.
Let GC be the complexification of G and gC its Lie algebra. Let �λC be the coadjoint

orbit of λ ∈ g∗ in g∗
C

under the action of GC. �λC is an algebraic variety defined over R and
�λ = �λC ∩ g∗.

Let C[g∗] be the ring of polynomials on g∗
C

. We denote by Inv(g∗
C
) the subalgebra of

polynomials invariant under the coadjoint action. It is generated by homogeneous polynomials,
pi, i = 1, . . . ,m (Chevalley generators). We have that

Inv(g∗) = Inv(g∗
C
) ∩ R[g∗].

If λ is regular, the ideal of �λC is given by [12], I0C = (pi − ci, i = 1, . . . ,m), ci ∈ R,

and the polynomials on �λC by C[�λC] = C[g∗]/I0C. For the real forms the ideal of �λ is
I0 = I0C ∩ R[g∗], with the same generators as the complex one and R[�λ] = R[g∗]/I0 =
C[�λC] ∩ R[g∗].

3. Star products on a regular coadjoint orbit

In this section we will consider complex star products which are deformations of the
complexification of a real Poisson algebra. We want to describe different star products
[9] that will be compared later.

From now on we fix a regular coadjoint orbit� in g∗. We will consider gh the Lie algebra
over C[[h]] obtained by multiplying the structure constants of gC by a formal parameter h. Uh
is its enveloping algebra.

3.1. The star products �S and �SN�

It is well known that Uh is a formal deformation of C[g∗]. In [1] it was shown that this
deformation is isomorphic to the star product canonically associated with the Kirillov–Poisson
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structure. Moreover, since the linear coordinates on g∗ are global, one can compute a star
product using Kontsevich’s universal formula.

The symmetrizer Sym (1) (that can be defined in the same way for any Lie algebra)
defines, through (2), a differential and algebraic star product on g∗ that we denote by �S . Any
other isomorphism that is the identity modulo h could be chosen in the place of Sym. All
the star products constructed in this way are equivalent to the one obtained with Kontsevich’s
explicit formula. All of them are algebraic and differential, but none of them is tangential to
all the orbits [13].

Since a differential star product tangential to all orbits cannot exist in the whole g∗ (see
appendix B), we have to look for a smaller space. We consider a regular orbit� and a regularly
foliated neighbourhood of the orbit, a tubular neighbourhoodN� � �×R

m, where the global
coordinates in R

m are the invariant polynomials pi, i = 1, . . . ,m. Since �S is differential,
it can be restricted to the open set N�. We will denote that restriction by �SN�

. �SN�
is

a differential star product belonging to the canonical equivalence class associated with the
Kirillov Poisson structure restricted to N�.

Since N� is a regular Poisson manifold, we know that a tangential star product (with
respect to the symplectic leaves) exists [6]. We want to prove that there exists a tangential star
product on N� equivalent to �SN�

.

3.2. The star products �T and �T�

We want to define a tangential star product �T on N� and its restriction �T� to the regular orbit
�. We will use the gluing of star products computed in appendix B in terms of a partition of
unity.

Let U = {Ur, r ∈ J }, where J is a set of indices, be a good covering of N� with Darboux
charts. The coordinates in an open set Ur are

ϕr : Ur −→ R
n with

ϕr = (θr , πr, p) = (
θ1
r , . . . , θ

(n−m)/2
r , π1

r , . . . , π
(n−m)/2
r , p1, . . . , pm

)
{
θαr , π

β
r

} = δαβ
{
θαr , pi

} = 0
{
pi, π

β
r

} = 0.

The invariant polynomialspi are global coordinates, soUr � Û r×R
m and {(Û r , (θr , πr))}r∈J

is an atlas of �, with {Û r , (θr , πr), r ∈ J } being the symplectic charts.
We can now apply Kontsevich’s formula in a coordinate patch Ur , using the Darboux

coordinates ϕr . We denote this star product by �Kr . It is a tangential star product. If �r denotes
the restriction of �SN�

to Ur , then �r and �Kr are equivalent. We will denote by

Rr : (C∞(Ur)[[h]], �r) −→ (
C∞(Ur)[[h]], �Kr

)
the isomorphism

Rr(f �r g) = Rr(f ) �
K
r Rr(g) Rr = Id +

∞∑
i=1

hnRnr .

In the intersection Urs = Ur ∩ Us , one has that �Kr and �Ks are equivalent as in (13) of
appendix B with

Trs = Rr ◦ R−1
s . (3)

We have the following.

Proposition 3.1. Let N� and U be the tubular neighbourhood of the orbit� and the covering
of N� defined above. Let FS be the sheaf of star products defined by �SN�

and �Kr the star
product obtained via the Kontsevich formula in Ur ∈ U .
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The assignment

Ur �→ (
C∞(Ur), �Kr

) ∀Ur ∈ U
is a sheaf of star products isomorphic to FS . There is a star product �T onN� that is tangential
and gauge equivalent to �SN�

.

Proof. It is necessary that the transition functions (3) satisfy the conditions (14) of appendix B,
so we have a sheaf of star products that we will denote by FT . The isomorphisms Rr give the
isomorphism of sheaves among FS and FT .

Given a partition of unity subordinated to U one can use the method of appendix B to
construct a global star product. From the explicit formula (15), one can see that it is a tangential
star product. �

The restriction of �T to the orbit will be denoted by �T�.

3.3. The star products �P and �P�

We want to define an algebraic star product �P on g∗ and its restriction to the orbit �, the
algebraic star product �P�.

We consider the ideal in Uh

Ih = (Pi − ci(h), i = 1, . . . ,m)

where Pi = Sym(pi) and ci(h) ∈ C[[h]] with ci(0) = c0
i . It has been proved in [8] thatUh/Ih

is a deformation quantization of C[�] = C[g∗]/I0 where

I0 = (
pi − c0

i , i = 1, . . . ,m
)

is the ideal of a regular orbit �. Further properties of this deformation were studied in [9].
The generalization of this construction to nonregular orbits was done in [10].

A star product associated with this deformation can be constructed by giving a C[[h]]-
module isomorphism:

ψ : C[g∗][[h]] −→ Uh

that maps the ideal I0 isomorphically onto Ih. One way of choosing this map (but not
the only one) is by using the decomposition of C[g∗] in terms of invariant and harmonic
polynomials [12]

C[g∗] ∼= Inv(g∗
C
)⊗ H.

The harmonic polynomials H are in one to one correspondence with C[�] and we have a
monomial basis B = {

xi1 . . . xik , (i1, . . . , ik) ∈ I}, where I is some subset of indices such that
B is a basis of C[�] (see [8] for more details). We consider the following C[[h]]-module
isomorphism:

ψ : C[g∗][[h]] −→ Uh(
pi1 − c0

i1

) · · · (pik − c0
ik

)⊗ xj1 · · · xjl �→ (
Pi1 − ci1(h)

) · · · (Pik − cik (h)
)⊗ (

Xj1 · · ·Xjl
)
,

(4)

with xj1 · · · xjl ∈ B. ψ defines an algebraic star product on C[g∗][[h]], that we will denote by
�P . Since ψ descends to the quotient, it also defines an algebraic star product on C[�][[h]]
and we will denote it by �P�. The case with ci(h) = c0

i was considered first in [7], where it
was shown that the star product is not differential.
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4. Comparison between �TΘ and �PΘ

In this section, we want to compare the differential star product �T� and the algebraic star
product �P� defined on a fixed regular coadjoint orbit �. We want to show that there is an
injective algebra homomorphism

H̃ : (C[�][[h]], �P�) −→ (C∞(�)[[h]]C, �T�).

We will first show that there exists an injective algebra homomorphism

H : (C[g∗][[h]], �P ) −→ (C∞(N�)[[h]]C, �T ) (5)

and then we will show that it descends appropriately to the quotients as an injective
homomorphism.

In order to compare the tangential star products �P on g∗ (algebraic, not differential) and
�T on N� (differential, not algebraic) we will use the nontangential star product �S on g∗

(algebraic and differential).
The algebraic star products �P and �S on g∗ are equivalent, since they define algebra

structures that are isomorphic to Uh. The equivalence is realized by the C[[h]]-module
isomorphism:

η : (C[g∗][[h]], �P ) → (C[g∗][[h]], �S)

η = Sym−1 ◦ ψ η(f �P g) = η(f ) �S η(g).

By the very definition (4)

f �P pi = f · pi
so, since the pi are central, the ideal I0 = (

pi − c0
i

)
in C[g∗][[h]] with respect to the

commutative product is equal to the ideal with respect to the product �P , I�P0 = (
pi − c0

i

)
�P

.
The generators of the ideal are mapped as

η
(
pi − c0

i

) = (Sym−1 ◦ ψ) (pi − c0
i

) = Sym−1(Pi − ci(h)) = pi − ci(h)

so the ideal I�P0 is mapped isomorphically by η onto the ideal with respect to the product �S ,
I�Sc(h) = (pi − ci(h))�S . We note that in the case of �S, Ic(h), the ideal generated by pi − ci(h)

with respect to the commutative product does not coincide with I�Sc(h). Note also that one can
choose the ci(h) arbitrarily, provided that ci(0) = c0

i .
Since �S is differential, it is well defined on the whole C∞(g∗)[[h]]C. The commutative

ideal generated by pi − c0
i on C∞(g∗)[[h]]C will be denoted by Î0. More generally, we can

define Ic(h) = (pi − ci(h)) ⊂ C[g∗][[h]], Îc(h) = (pi − ci(h)) ⊂ C∞(g∗)[[h]]C. We have
that I0 ⊂ Î0 and Ic(h) ⊂ Îc(h).

Let us consider the restriction map

r : C∞(g∗)[[h]]C −→ C∞(N�)[[h]]C.

Since the commutative product and �S are both local, the restriction r is an algebra
homomorphism, between C∞(g∗)[[h]]C and C∞(N�)[[h]]C as commutative algebras, and
also between (C∞(g∗)[[h]]C, �S) and (C∞(N�)[[h]]C, �SN�

).
We consider the restriction of polynomials r(C[g∗][[h]]). Since a polynomial is

determined by its values on any open set, we can identify, via r, (C[g∗][[h]], �S) with a
subalgebra of (C∞(N�)[[h]]C, �SN�

).
On C∞(N�)[[h]]C there is an equivalence among �SN�

and �T (proposition 3.1). We
denote it by

ρ : (C∞(N�)[[h]]C, �SN�
) −→ (C∞(N�)[[h]]C, �T )

ρ(f �S g) = ρ(f ) �T ρ(g) ρ = Id +
∑∞

n=1
hnρn
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where ρn are bidifferential operators. We have given the injective homomorphism (5) by
H = ρ ◦ r ◦ η.

We now want to show that H(I0) = Ĵ0, where Ĵ0 is the ideal with respect to �T in
C∞(N�)[[h]]C generated by pi − c0

i .
We want to find out how the generators pi − ci(h) are mapped under ρ. The scalars are

mapped into scalars, since the bidifferential operators involved in the star products �T and
�SN�

are null on the constants, and so are the operators ρn. We need to know ρ(pi).

Remark 4.1. Since ρ is an isomorphism of algebras and pi belongs to the centre of
(C∞(N�)[[h]], �S), ρ(pi) must also be in the centre of (C∞(N�)[[h]], �T ). A function
f in the centre of (C∞(N�)[[h]], �T ) is a function depending only on the global coordinates
f (p1, . . . pm), since the condition

f �T g − g �T f = 0 ∀g ∈ C∞(N�)

implies for the Poisson bracket

{f, g} = 0 ∀g ∈ C∞(N�)

so {f, } is a null Hamiltonian vector field and in particular does not have components tangent
to the symplectic leaves.

Remark 4.2. The algebra homomorphism condition determines the form of ρ on the centre
in terms of ρ(pi) = pi + ai(p, h), where ai(p, h) = hzi(p, h). In fact, on the centre we have

ρ =
∑
j1...jm

a
j1...jm
1...m (p, h)

∂

∂p
j1
1

· · · ∂

∂p
jm
m

.

a0...0
1...m = 1 and the rest of coefficients are multiples of h. In particular, the images of pi are
ρ(pi) = pi + a0...1...0

1...i...m(p, h) = pi + ai(p, h). Using the fact that �T is tangential we have

f �T pi = f · pi ∀f ∈ C∞(N�)

the homomorphism condition reads

ρ
(
p
i1
1 · · ·pimm

)
= (p1 + a1)

i1 · · · (pm + am)im .

The solution of this equation is

a
j1...jm
1...m = 1

j1! · · · jm!
a
j1
1 · · · aj1

m . (6)

In particular, ρ is trivial on the centre if and only if a1 = · · · = am = 0.
By remarks 4.1 and 4.2 we have that

H
(
pi − c0

i

) = ρ(pi − ci(h)) = pi + ai(p, h)− ci(h) = pi − c0
i + h(zi(p, h)−�i(h))

where we have denoted ai(p, h) = hzi(p, h) and ci(h) = c0
i + h�i(h). Since �i(h) is

arbitrary, we can choose it as

�i(h) = zi
(
c0
i , h

)
. (7)

It is not difficult to see that

zi(p, h) −�i(h) =
m∑
j=1

bij
(
pj − c0

j

) ∈ r(I0)

and we have

pi − c0
i + h(zi(p, h) −�i(h)) =

m∑
j=1

(δij + hbij )
(
pi − c0

i

)
.
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The matrix (δij + hbij ) is invertible, so the ideal generated by H
(
pi − c0

i

)
in H(C[g∗][[h]])

coincides with the ideal generated by
(
pi − c0

i

)
in H(C[g∗][[h]]). (For �T , the star ideal

coincides with the commutative ideal.)
In order to state the main result we need a lemma.

Lemma 4.1. Let J0 be the ideal in (H(C[g∗][[h]]), �T ) generated by
(
pi − c0

i

)
and let Ĵ0 be

the ideal in (C∞(N�)[[h]], �T ) generated by the same generators. Then

Ĵ0 ∩H(C[g∗][[h]]) = J0.

Proof. Since the product �T is tangential to the orbits the star ideals J0 and Ĵ0 coincide with
the ideals with respect to the commutative product, so we will limit ourselves to those.

One inclusion is obvious. For the other, let b = ∑∞
r=0 brh

r ∈ H(C[g∗][[h]]). Assume
that

H(b) =
m∑
i=1

f iH
(
pi − c0

i

)
(8)

where f i = ∑∞
r=0 f

i
r h

r ∈ C∞(N�)[[h]]C are not unique. We need to prove that f i can be
chosen in H(C[g∗][[h]]). We will show that there exist qi = ∑∞

r=0 q
i
rh
r ∈ C[g∗][[h]] such

that br = ∑m
i=1 q

i
r

(
pi − c0

i

)
. This will clearly be enough.

By induction on r. For r = 0, we look at the order 0 in h of the equation (8) (we recall
that H = Id mod(h)),

b0 =
∑
i

f i0
(
pi − c0

i

) ∈ C[g∗] ⊂ C∞(N�)C.

It is not difficult to see that f i0 can be chosen in C[g∗], so we set qi0 = f i0 .
We go to the general case. By the induction hypothesis, we assume that we have found

qi0, . . . q
i
r , with

b0 + b1h + · · · + brhr =
m∑
i=1

(
qi0 + qi1h + · · · + qirh

r
) (
pi − c0

i

)
.

Then

H(b)−H
(
b0 + b1h + · · · + brhr

) =
m∑
i=1

(
f i −H

(
qi0 + · · · + qirh

r
)
H
(
pi − c0

i

)
so

hr+1H(br+1 + br+2h + · · ·) = hr+1
m∑
i=1

(
f ir+1 −

∑
s+t=r+1

Hs
(
qit
))
H
(
pi − c0

i

)
mod(hr+2).

Since the ring C∞(N�)[[h]]C is torsion free we have

H(br+1 + br+2h + · · ·) =
m∑
i=1

(
f ir+1 −

∑
s+t=r+1

Hs
(
qit
))
H
(
pi − c0

i

)
mod(h).

Now if we look at the order 0 in h

br+1 =
m∑
i=1

(
f ir+1 −

∑
s+t=r+1

Hs
(
qit
)) (

pi − c0
i

)
,

as in the r = 0 case, if we set

qir+1 = f ir+1 −
∑

s+t=r+1

Hs
(
qit
)

it is not difficult to see that it can be chosen as a polynomial, which gives us the result. �
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Proposition 4.1. Let � be a regular coadjoint orbit of a compact Lie group defined by the
constraints

pi − c0
i i = 1, . . . ,m.

There is an injective homomorphism between the algebraic deformation of C[�] defined by
Uh/Ih with Ih generated by

Pi − c0
i + h�i(h)

and the differential deformation of C∞(�)C (C∞(�)[[h]]C, �T�), which is obtained via the
Kontsevich formula (see section 3.2 for more details), provided the constants�i(h) are chosen
as in (7).

Proof. H is an algebra isomorphism onto its image. We have the commutative diagram

C[g∗][[h]]
H−→ H(C[g∗][[h]]) ⊂ C∞(N�)[[h]]C

| |↓ ↓π πH

C[�][[h]]
H̃−→ H(C[g∗][[h]])/H(I0) ⊂ C∞(�)[[h]]C

The last inclusion follows from lemma 4.1. �

Remark 4.3. We want to note that the ideal Ih used in the previous proposition is not, in
general, the ideal used in geometric quantization. In fact, for SU(2) it was shown in [8] that
the latter is generated by

P − l(l + h̄) h̄ = h

2π
.

(P is the Casimir of su(2)). But according to remark 4.2, (6) the ideal has either ci(h) = c0
i or

�i(h) is an infinite series in h (an exponential). Then we have a contradiction.
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Appendix A

In this appendix we want to give some standard definitions on deformations and star products
that have been used throughout the text.

Definition A1. Let (A, { , }) be a Poisson algebra over R. We say that the associative algebra
A[h] over R[[h]] is a formal deformation of A if

1. there exists an isomorphism of R[[h]]-modules ψ : A[[h]] −→ A[h];
2. ψ(f1f2) = ψ(f1)ψ(f2)mod(h), ∀f1, f2 ∈ A[[h]];
3. ψ(f1)ψ(f2) − ψ(f2)ψ(f1) = hψ

({
f 0

1 , f
0

2

})
mod(h2), ∀f1, f2 ∈ A[[h]], fi ≡ f 0

i

mod(h), i = 1, 2.

If AC is the complexification of a real Poisson algebra A we can give the definition of
formal deformation of AC by replacing R with C in the above definition.

The associative product in A[[h]] defined by

f � g = ψ−1(ψ(f ) · ψ(g)) f, g ∈ A[[h]] (9)

is called the star product on A[[h]] induced by ψ .
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A star product on A[[h]] can also be defined as an associative R[[h]]-linear product given
by the formula

f � g = fg + B1(f, g)h + B2(f, g)h
2 + · · · ∈ A[[h]] f, g ∈ A

where the Bi are bilinear operators. By associativity of � one has that {f, g} = B1(f, g) −
B1(g, f ). So this definition is a special case of the previous one where Ah = A[[h]] and � is
induced by ψ = Id.

Two star products on A[[h]], � and �′ are said to be equivalent (or gauge equivalent) if
there exists T = ∑

n�0 h
nTn, with Tn linear operators on A[[h]], T0 = Id such that

f � g = T −1(Tf �′ Tg).

If A ⊂ C∞(M) and the operators Bi are bidifferential operators we say that the star
product is differential. If in addition A = C∞(M) and M is a real Poisson manifold, we will
say that � is a differential star product on M.

In [1] Kontsevich classifies differential star products on a manifold M up to gauge
equivalence.

Theorem A1 (Kontsevich [1]). The set of gauge equivalence classes of differential star
products on a smooth manifold M can be naturally identified with the set of equivalence
classes of Poisson structures depending formally on h,

α = hα1 + h2α2 + · · ·
modulo the action of the group of formal paths in the diffeomorphism group of M, starting at
the identity isomorphism.

In particular, for a given Poisson structure α1, we have the equivalence class of differential
star products associated with hα1. We will say that this is the equivalence class of star products
canonically associated with the Poisson structure α1.

Also, an explicit universal formula to compute the bidifferential operators of the star
product associated with any formal Poisson structure is given in [1] in the case of an arbitrary
Poisson structure on flat space R

n. The formula depends on the coordinates chosen, but it was
also proved in [1] that the star products constructed with different choices of coordinates are
gauge equivalent.

Let AC = C[MC] be the coordinate ring of the complex algebraic affine variety MC

defined over R whose real points are a real algebraic Poisson variety M. If the Bi are bilinear
algebraic operators we will say that � is an algebraic star product on M.

An example of great interest to us, of such M, is given by the dual g∗ of the Lie algebra
of a compact semisimple Lie group (see section 2).

The classification of algebraic star products is still an open problem [11].

Definition A2. Let N be a submanifold of the Poisson manifold M and let �M be a star product
on M. We say that �M is tangential to N if forf, g ∈ C∞(N)

f �N g =def (F �M G)|N with f = F |N g = G|N
is a well-defined star product on N, that is, if

(F − F ′)|N = (G−G′)|N = 0 then F �M G|N = F ′ �M G′|N (10)

for F,F ′,G,G′ ∈ C∞(M).

The same definition works for algebraic Poisson varieties, replacing the algebra of C∞

functions with the algebra of polynomials on the varieties.
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Given a Poisson manifold M, one can ask if there exists a differential star product on M,
that is tangential to all the leaves of the symplectic foliation. For regular manifolds a positive
answer was found in [6]. For M = g∗ foliated in coadjoint orbits, it was found in [13] that
there is an obstruction to the existence. In particular, for a semisimple Lie algebra g∗ it is not
possible to find a differential star product on g∗ which is tangential to all coadjoint orbits.

Appendix B

In this appendix, we want to give an explicit formula on how to construct a global star product
starting from the star products defined on open sets of a manifold and satisfying certain
conditions (see below). We will refer to this procedure as gluing of star products, and it will
be used in section 3.

Let � be a differential star product on a manifold M. Since the operators Bi that define �
are local, there are well defined star products �U on every open set U of M. We have a sheaf
of algebras S:

S(U) = (C∞(U)[[h]], �U) (11)

which we will call a sheaf of star products.
Let M be a Poisson manifold and fix an open cover U = {Ur}r∈J where J is some set of

indices. Assume that in each Ur there is a differential star product

�r : C∞(Ur)[[h]] ⊗ C∞(Ur)[[h]] −→ C∞(Ur)[[h]].

This defines a collection of sheaves of star products

Fr (Vr) = (C∞(Vr)[[h]], �r) Vr ⊂ Ur. (12)

It is a general fact in theory of sheaves that if there are isomorphisms of sheaves in the
intersections

Tsr : Fr (Urs) −→ Fs(Usr) Ur1...rk = Ur1 ∩ · · · ∩ Urk
Tsr(f ) �s Tsr(g) = Tsr(f �r g)

(13)

such that the following conditions are satisfied

1. Trs = T −1
sr on Usr,

2. Tts ◦ Tsr = Ttr on Urst
(14)

then there exists a global sheaf F on M isomorphic to the local sheaves Fr on each Ur .
If the sheaves of star products (12) satisfy the conditions (14) with

Tsr = Id mod(h)

then we have a global sheaf of star products on M. The algebra of the global sections is
C∞(M)[[h]] together with a star product that we will call the gluing of local star products.
We want to write an explicit formula for the star product of global sections.

We denote Ur1...rk = Ur1 ∪ . . . ∪ Urk . Let us first consider the gluing on two open sets,
say U1 and U2, with non-trivial intersection. Let φ1 : U1 → R, φ2 : U2 → R be a partition of
unity of U 12,

φ1(x) + φ2(x) = 1 ∀x ∈ U 12 supp(φr) ⊂ Ur.

Let fr ∈ C∞(Ur)[[h]] such that fs = Tsrfr in Urs . One can define an element
f ∈ C∞(Urs)[[h]] by f = φ1f1 + φ2f2. On the intersection U12 one has

f = φ1f1 + φ2T21f1 = (φ1Id + φ2T21)f1 = A21f1.
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Note that the operator A21 = Id + O(h) is invertible. On U 12 we can define the star product

f � g =


(f1 �1 g1)(x) if x ∈ U1 − U12

A21
(
A−1

21 (f ) �1 A
−1
21 (g)

)
(x) if x ∈ U12

(f2 �2 g2)(x) if x ∈ U2 − U12.

(15)

It is easy to check that the star product is smooth.
One can do the gluing interchangingU1 and U2. One has that on U12

f = φ1f1 + φ2f2 = (φ1T12 + φ2Id)fj = A12f2.

A12 is also invertible and

A21 = A12T21

provided T12 = T −1
21 . One can construct a star product on U 12 using the same procedure as

in (15). It is easy to check that both star products are identical.
The procedure in (15) can be generalized to an arbitrary number of open sets. Let

φi : Ui → R be a partition of unity of M subordinate to the coveringU . We define f ∈ C∞(M)

f =
∑
r∈J

φrfr where fr = Trsfs .

On Ur, f becomes

f =
(
φr Id +

∑
s

φsTsr

)
fr = Arfr .

The star product on Ur is defined as

f � g = Ar
(
A−1
r (f ) �r A

−1
r (g)

)
. (16)

Using conditions (14) one has

ArTrt = At.

Then, the star products (16) on each Ur coincide in the intersections, so they define a unique
star product on M. The restriction of this star product to Ur is equivalent to �r . Also, using
different partitions of unity one obtains equivalent star products.
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